

Heavy Quark Production at the Tevatron

Guillelmo Gómez-Ceballos

Massachusetts Institute of Technology

On behalf of the D0 & CDF Collaborations

Heavy Quarks and Leptons, Puerto Rico, June 2004

In this talk...

A lot of analyses are in progress at the Tevatron, here not at all exhaustive summary!

- Cross-section measurements:
 - Prompt charm meson
 - Inclusive J/ψ
 - b \rightarrow J/ ψ X
 - $\gamma + b/c$
- Exclusive measurements:
 - B hadron masses
 - CP asymmetries and decay rate ratios
 - Observation of narrow D** states in semileptonic B decays
 - B⁰ mixing
 - Search for pentaquarks

- Not included:
 - B lifetimes (discussed in other sessions)
 - BR(B_s \rightarrow D_s π)
 - BR(B⁺ \rightarrow ϕ K⁺)
 - B_c -> $J/\psi \mu X$ search
 -

- Not included, but available in the back up slides:
 - •B_s $\rightarrow \mu \mu$ search (discussed in other sessions)
 - $X(3872) \rightarrow J/\psi \pi \pi$ state (discussed in other sessions)
 - Two body charmless decays studies
 - B_s mixing sensitivity

Tevatron Performance

- The Tevatron is working quite well this year
- Record Initial luminosity = $7.4 \times 10^{31} \text{ sec}^{-1} \text{ cm}^{-2}$
- Detector efficiency ~85-90%

~300 pb⁻¹ on tape per experiment

Detectors

Both detectors
Silicon microvertex tracker
Axial solenoid
Central tracking
High rate trigger/DAQ
Calorimeters and muons

CDF

L2 trigger on displaced vertexes Particle ID (TOF and dE/dx) Excellent tracking resolution

DØ

Excellent muon ID and acceptance Excellent tracking acceptance $|\eta| < 2-3$ L3 trigger on impact parameter/L2 impact parameter trigger being commissioned

Heavy Flavor Physics at the Tevatron

B Bbar production mechanics in hadron collider:

- Huge Charm and Bottom cross-sections
- All B species produced:

$$-B_u, B_d, \mathbf{B_s}, \mathbf{B_c}, \mathbf{\Lambda_b}, \dots$$

BUT $\sigma(bb) \ll \sigma(pp) \Rightarrow B/C$ events have to be selected with specific triggers...

Trigger requirements: large bandwidth, background suppression, deadtimeless

Heavy Flavor Triggers

- Single/di-lepton (CDF/D0)
 - High p_T lepton or two leptons with lower p_T
 - J/ ψ modes, masses, lifetime, x-section
 - Yields higher than Run I (low Pt threshold, increased acceptance)
- lepton + displaced track semileptonic sample (CDF)
 - $p_T(e/\mu) > 4 \text{ GeV/c}, 120 \ \mu\text{m} < d0(\text{Trk}) < 1\text{mm}, p_T(\text{Trk}) > 2 \text{ GeV/c}$
 - Semileptonic decays, Lifetimes, flavor tagging
 - B Yields 3x Run I
- Two displaced vertex tracks hadronic sample (CDF)
 - p_T(Trk) >2 GeV/c, 120 μm < d0(Trk) < 1mm, Σ p_T > 5.5 GeV/c
 - X-section, branching ratios, B_s mixing...

INCLUSIVE CROSS-SECTION MEASUREMENTS

Prompt Charm Meson X-Section

- Measure prompt charm meson production cross section using the CDF Two Track Trigger
- Large and clean signal Measurement not limited by statistics

Separate prompt and secondary charm based on their **impact parameter distribution**

Tail due to B→D

Direct Charm Meson Fraction:

D⁰: $f_D = 86.5 \pm 0.4 \pm 3.5\%$

 D^{*+} : $f_D = 88.1 \pm 1.1 \pm 3.9\%$

D⁺: $f_D = 89.1 \pm 0.4 \pm 2.8\%$

 D_{s}^{+} : f_{D} =77.3±4.0±3.4%

Prompt Charm Meson X-Section

Calculation from M. Cacciari and P. Nason: Resummed perturbative QCD (FONLL) JHEP 0309,006 (2003)

CTEQ6M PDF

 $M_c=1.5 \text{ GeV},$

Fragmentation: ALEPH measurement

Renorm. and fact. Scale: $m_T = (m_c^2 + p_T^2)^{1/2}$

Theory uncertainty: scale factor 0.5-2.0

$$\sigma(D^{0}, p_{T} \geq 5.5 \text{GeV}, | Y | \leq 1) = 13.3 \pm 0.2 \pm 1.5 \mu b$$

$$\sigma(D^{*+}, p_{T} \geq 6 \text{GeV}, | Y | \leq 1) = 5.2 \pm 0.1 \pm 0.8 \mu b$$

$$\sigma(D^{+}, p_{T} \geq 6 \text{GeV}, | Y | \leq 1) = 4.3 \pm 0.1 \pm 0.7 \mu b$$

$$\sigma(D_{s}^{+}, p_{T} \geq 8 \text{GeV}, | Y | \leq 1) = 0.75 \pm 0.05 \pm 0.22 \mu b$$

Inclusive J/ψ X-Section

CDF: Lower p_T trigger threshold for μ : $p_T(\mu) \ge 1.5$ GeV J/ψ acceptance down to $p_T=0$

D0: Larger acceptance for μ

Inclusive J/ψ X-Section

$$\sigma(p\bar{p} \to J/\Psi X, |y(J/\Psi)| < 0.6) = 4.08 \pm 0.02(stat)_{-0.48}^{+0.60}(syst)\mu b$$

CDF: 39.7 pb⁻¹

D0: 4.8 pb⁻¹

Extract Contribution from b \rightarrow J/ ψ X

The J/ ψ inclusive cross-section includes contribution from

- Direct production of J/ψ
- Decays from excited charmonium: $\Psi(2S) \rightarrow J/\psi \pi^+\pi^-, ...$
- Decays of b-hadrons: $B \to J/\psi X, ...$

Inclusive b X-Section (CDF)

- RunI b cross-section ~ 3x old NLO QCD
- Theoretical approaches: new physics, Next-to-Leading-log resummations, non perturbative fragmentation function from LEP, new factorization schemes...
- An unbinned maximum likelihood fit to the flight path of the J/ψ in the r- ϕ plane to extract the b fraction

Bottom Quark Production cross-section:

$$\sigma(p\bar{p} \to bX)|_{|y|<1.0} = (29.4 \pm 0.6(stat) \pm 6.2(sys)) \ \mu b$$

FONLL
$$\sigma(p\bar{p} \to bX)|_{|y| < 1.0} = (27.5^{+11}_{-8.2}) \mu b$$

Inclusive b X-Section (D0)

 μ + jet sample

Using μ p_T spectrum to fit the b and non b content as a function of jet E_T

γ + b/c X-Section

- It probes the heavy flavor content of the proton, sensitive to new Physics
- Basic requirements:
 - One isolated and High $E_t \gamma$ (> 25 GeV)
 - One jet with a secondary vertex (b/c "like" jet)
- Fit on the secondary vertex mass distribution of the tagged jets to determine the number of events containing b, c and uds quarks in the data

 $\gamma + \mathbf{b}$

Cross-section measurements agree with the QCD predictions

Overall fit

$$\sigma(b + \gamma) = 40.6 + /- 19.5 \text{ (stat.)} + 7.4 - 7.8 \text{ (sys.)} \text{ pb}$$

 $\sigma(c + \gamma) = 486.2 + /- 152.9 \text{ (stat.)} + 86.5 - 90.9 \text{ (sys.)} \text{ pb}$

Once the overall picture is under control,
I will talk about some recent measurements from exclusive modes...

Results from 'exclusive' channels

Yields in Exclusive B Decays

B masses in Exclusive J/ψ channels

Mass measurements in fully reconstructed B decays:

•Small systematic uncertainties

S

- •Best **B**⁺ and **B**⁰ single measurements
- •Best \mathbf{B}_{s} and $\mathbf{\Lambda}_{b}$ w.r.t the combined PDG

Results in Mev/c ²	CDF preliminary	PDG value
B ⁺	$5279.10 \pm 0.41 \pm 0.34$	5279.0 ± 0.5
B ⁰	$5279.57 \pm 0.53 \pm 0.30$	5279.4 ± 0.5
B _s	$5366.01 \pm 0.73 \pm 0.30$	5369.6 ± 2.4
Λ_{b}	5619.7 ± 1.2 ± 1.2	5624 ± 9

tracking \Rightarrow improve yield by 50%

CP Asymmetries and Decay Rate Ratios

• The huge amount data collected by the CDF Two Track Trigger have been used for this analysis

Relative branching ratios:

$$\Gamma(D^0 \rightarrow K^+K^-) / \Gamma(D^0 \rightarrow K\pi)$$

$$\Gamma(D^0 \rightarrow \pi^+\pi^-) / \Gamma(D^0 \rightarrow K\pi)$$

$$\Gamma(D^0 \rightarrow KK) / \Gamma(D^0 \rightarrow \pi\pi) \sim 2.8 \text{ (SM)}$$

Direct CP-violating decay rate assymetries:

$$A_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)} \approx 0(SM)$$

•Candidates selected as: $D^{*+/-} \rightarrow D^0 \pi$ (unbiased tag of the D^0 flavor)

~2 X 90000 D*+/-!!!

CP Asymmetries and Decay Rate Ratios

CP Asymmetries and Decay Rate Ratios

Very important to understand the asymmetry of the CDF detector!!!

Results are computed after applying a correction for the intrinsic charge asymmetry of the detector response and tracking algorithms

≥ 0.08	
0.06	Track Charge Asymmetry
Asymmetry 0.00 0.00	<u>-</u>
0.02	
0	 ───────────────────
-0.02	+
-0.04	• generic Tracks
-0.06	• K _s Tracks
-0.08	0.5 1 1.5
	Pt (GeV/c)

Ratio	CDF	FOCUS	
$\Gamma(D^0 \rightarrow KK)/\Gamma (D^0 \rightarrow K\pi)$	(9.96 +/- 0.11 +/- 0.12)%	(9.93 +/- 0.14 +/- 0.14)%	
$\Gamma(D^0 \to \pi\pi) / \Gamma(D^0 \to K\pi)$	(3.608 +/- 0.054 +/- 0.040)%	(3.53 +/- 0.12 +/- 0.06)%	
$\Gamma(D^0 \to KK)/\Gamma \ (D^0 \to \pi\pi)$	(2.762 +/- 0.040 +/- 0.034)%	(2.81 +/- 0.10 +/- 0.06)%	

$$A(D^0 \rightarrow KK) = (2.0 +/- 1.2 \text{ (stat.)} +/- 0.6 \text{ (syst.)})\%$$

 $A(D^0 \rightarrow \pi\pi) = (1.0 +/- 1.3 \text{ (stat.)} +/- 0.6 \text{ (syst.)})\%$

CLEO-II

 $A(D^0 \rightarrow KK) = (0.0 +/- 2.2 \text{ (stat.)} +/- 0.8 \text{ (syst.)})\%$ $A(D^0 \rightarrow \pi\pi) = (1.9 +/- 3.2 \text{ (stat.)} +/- 0.8 \text{ (syst.)})\%$

Observation of B $\rightarrow \mu \nu D^{**} X$

Start from "B $\rightarrow \mu \nu D^{*-} + X$ " sample, and "reconstruct another π^{+} ". Look at mass of $D^{*-} \pi^{+}$ system.

Excess in right-sign combinations can be interpreted as combined effect of $D_1^{\ 0}$ and $D_2^{\ *0}$

Work in progress:

extract separate amplitude, phase for each state

From topological analyses at LEP we know:

Br(B
$$\rightarrow$$
 D*+ π - $\mu \nu X$) = 0.48 \pm 0.10 %

DØ's preliminary result constrains the resonant contribution

$$Br(B \to \{D_1^{\ 0}, D_2^{\ *0}\} \ \mu \ \nu \ X) \cdot Br(\{D_1^{\ 0}, D_2^{\ *0}\} \to D^{*+} \ \pi^-) = 0.280 \pm 0.021 \ (stat) \pm 0.088 \ (syst) \ \%$$

B⁰/B Mixing

The B^0/B^0 mixing frequency Δm_d has been measured with high precision, most recently at the B factories. Measurements of Δm_d constrain $|V_{td}|$, but current limitations are due to theoretical inputs.

Why is B⁰ Mixing analysis so important?:

- Benchmark the initial state flavor tagging
- A step toward B_s Mixing

Semileptonic B decays (D0, CDF analysis in progress) Fully reconstructed B decays (CDF)

B Mixing Measurement

"Ingredients" to get a $B_{(d,s)}$ mixing measurement:

• Measure proper decay time:

$$c\tau = \frac{L_{xy}}{\beta \gamma} = \frac{L_{xy} m(B)}{P_T(B)} \rightarrow \sigma_{ct} = \frac{m(B)}{P_T(B)} \sigma_{Lxy} \oplus c\tau \left(\frac{\sigma_{P_T(B)}}{P_T(B)}\right)$$

• Identify B flavor at decay:

Reconstruct the final state with good S/B (precise tracking, vertexing, particle ID)

• Identify the flavor of B at production:

B - flavor tagging algorithms

B⁰ yields

Mixing and Flavor Tagging

Figure of merit: εD^2

- ε: tag efficiency
- D: dilution

$$A(t) = \frac{N_R(t) - N_W(t)}{N_R(t) + N_W(t)} = D\cos(\Delta mt)$$

$$A = \frac{N_R - N_W}{N_R + N_W} = D = 1 - 2P_{Tag}$$

• Strategy:

- use data for calibration (*e.g.* $B^{\pm} \rightarrow J/\psi K^{\pm}$, $B^{\pm} \rightarrow D^{0}\pi^{\pm}$, $B \rightarrow lepton...$)
- allow to measure ε , D and εD^2 in data and optimize the taggers
- can then apply them in any sample without bias

High precision measurement in B_d mixing

Flavor Tagging algorithms

OST (Opposite Side Tagging):

B's are produced in pairs → measure flavor of opposite B

- ■JETQ: sign of the weighted average charge of opposite B-Jet
- **SLT**: identify the soft lepton from semileptonic decay of opposite B
- **■Opposite Side K**: due to $b \rightarrow c \rightarrow s$ it is more likely that a **B** meson will contain in final state a K⁺ than a K⁻. Identify K⁻ in the opposite side

SST (Same Side Tagging):

- (*) SS pion T: B⁰ is likely to be accompanied close by a
- π^+ from fragmentation
- **SS** Kaon T: B_s is likely to be accompanied close by a K^+ from fragmentation

B⁰ mixing results from CDF

CDF uses fully reconstructed B^0 decays to measure Δm_d :

- **♣** This analysis uses Same-Side Pion Tag
- Preliminary results:

$$\Delta m_d = 0.55 \pm 0.10 \text{ (stat.)} \pm 0.01 \text{ (syst.) ps}^{-1}$$

Work in progress:

- improve SST
- other tagging methods:
 - JQT, SMT, SET
- add more fully reconstructed decay channels
- use semileptonic B decays!

B⁰ mixing results from DØ

DØ Run II Preliminary D0 uses a large sample of semileptonic B⁰ decays to measure Δm_d :

- This analysis uses Opposite-Side Muon tag
- **■** Preliminary results:

$$\Delta m_d = 0.506 \pm 0.055$$
 (stat.) ± 0.049 (syst.) ps⁻¹

- Consistent with world average: $0.502 \pm 0.007 \text{ ps}^{-1}$
- Tagging efficiency: $4.8 \pm 0.2 \%$
- Tagging purity, $N_R/(N_R+N_W) = 73.0 \pm 2.1 \%$

Work in progress:

- other tagging methods: JQT, SST
- add more decay channel
- add fully reconstructed decays

Pentaquarks searches

Summary of the new CDF results on the search for Pentaquarks: CDF has looked at all known channels and has nothing so far

• Channels:

•
$$\Theta^+ \rightarrow p K_s \rightarrow p \pi^+ \pi^-$$

•
$$\Xi^0_{3/2} \rightarrow \Xi^- \pi^+ \rightarrow \Lambda \pi^+ \pi^-$$

•
$$\Xi^{-}_{3/2} \rightarrow \Xi^{-} \pi^{-} \rightarrow \Lambda \pi^{-} \pi^{-}$$

•
$$\Theta_c \rightarrow D^{*-} p \rightarrow D^0 \pi^- p$$

Search for $\Theta^+ \rightarrow p K_s$

- Use 2 energy ranges (min bias and jet20)
- Identify protons using TOF

No evidence for narrow resonance

CDF is working on limit for s $(\Theta^+/\Lambda(1520))$

Search for $\Xi^{0/-}_{3/2} \rightarrow \Xi \pi$

- CDF has developed tracking of long lived hyperons in the SVX detector
- Silicon tracking of hyperons improves momentum and impact parameter resolution as well as background reduction

Search for $\Theta_c \rightarrow D^{*-}p$

- Identify protons using TOF (p<2.75 GeV/c) or dEdx (p > 2.75 GeV/c)
- Large sample of D^{*-} (0.5M)
 - No evidence of charmed Pentaquark seen
 - Combined upper limit: < 29 events (90% C.L.)

Summary

• Inclusive cross-section measurements agree, within the errors, with the theoretical expectations

Results in Mev/c ²	CDF preliminary	PDG value
B ⁺	$5279.10 \pm 0.41 \pm 0.34$	5279.0 ± 0.5
B ⁰	$5279.57 \pm 0.53 \pm 0.30$	5279.4 ± 0.5
B_s	$5366.01 \pm 0.73 \pm 0.30$	5369.6 ± 2.4
Λ_{b}	5619.7 ± 1.2 ± 1.2	5624 ± 9

• Charm Physics:

$$\bullet A(D^0 \rightarrow KK) = (2.0 + -1.2 \text{ (stat.)} + 0.6 \text{ (syst.)})\%$$

•A(D⁰
$$\rightarrow \pi\pi$$
) = (1.0 +/- 1.3 (stat.) +/- 0.6 (syst.))%

- Observation of narrow D** states in semileptonic B decays
- •B⁰ Mixing measurement already established in both experiments, another step toward B_s mixing
- No evidence of Pentaquarks in the Tevatron data so far

Work in progress, stay tuned!

Backup Slides...

Rare B decays: B $_{s(d)}\rightarrow \mu^{+}\mu^{-}$ from CDF

- No excess has been found unfortunately
- Limits on the Branching fractions have been set

(Expected/Observed) BR limits vs. luminosity

Already Submitted to PRL!

	B _s →μ⁺μ⁻	$B_d \rightarrow \mu^+ \mu^-$
Background	1.05 +/- 0.30	1.07 +/- 0.31
Data	1	1
BR limit @95% C.L.	7.5 X 10 ⁻⁷	1.9 X 10 ⁻⁷
BR limit @90% C.L.	5.8 X 10 ⁻⁷	1.5 X 10 ⁻⁷

Slightly better results than Belle and BaBar

1.6 X 10⁻⁷

2.0 X 10⁻⁷

Best world result

$B_s \to \mu^+ \mu^-$ sensitivity study from D0

Optimised cuts using Random Grid Search [Prosper, CHEP'95; Punzi, CSPP'03] based on the mass sidebands

After optimisation:

expect 7.3 ± 1.8 background events in signal region

The analysis has not been *unblinded* yet (signal region still hidden)

Expected limit (Feldman/Cousins):

$$\begin{split} &Br(B_s \to \mu^+ \, \mu^\text{-}) < 9.1 \cdot 10^\text{-7} \; \text{ @ 95 \% CL} \quad \text{(stat only)} \\ &Br(B_s \to \mu^+ \, \mu^\text{-}) < 1.0 \cdot 10^\text{-6} \; \text{ @ 95 \% CL} \quad \text{(stat + syst)} \\ &\text{(expected signal has been normalised to } B^\pm \to J/\Psi \; K^\pm \; \text{)} \end{split}$$

Published CDF Run I result (98 pb⁻¹):

$$\begin{split} Br(B_s \rightarrow \mu^+ \, \mu^\text{-}) \\ < 2.6 \cdot 10^\text{-6} \ \, @ 95 \% \ CL \end{split}$$

B $_{s(d)}\rightarrow \mu^{+}\mu^{-}$ constraints

Branching ratio for $B_s \rightarrow mm$ as a function of $m_{1/2}$ for $m_0 = 300,500$ and 800 in R-parity violation SUSY scenario. Other mSUGRA parameters are fixed to be tanb=10, $A_0 = 0$ and m > 0

Dashed lines are to indicate the models that are excluded via $b \rightarrow s\gamma$ constraints

Exotic State: $X(3872) \rightarrow J/\psi \pi^+ \pi^-$

 $\Delta M = 774.9 \pm 3.1(stat) \pm 3.0 (sys) \text{ MeV/c}^2$ $\Delta M + M(J/\psi) = 3871.8 \pm 4.3 \text{ MeV/c}^2$ $M_X = 3871.3 \pm 0.7 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ MeV/c}^2$

Belle: $M_X = 3872.0 \pm 0.6 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV/c}^2$

Soft Muon Tag in Semileptonic Sample at CDF

lepton + displaced track trigger provides high statistics sample

Analysis:

- Trigger lepton used to estimate B flavor at production
- Identify μ charge on opposite side
- Cross check consistency with partially reconstructe lepton+ $\mathbf{D}^{+,0}$
- Remainder: this number is UNBIASED since we are using an independent (and high statistics) control sample

Detailed sample composition studies:

Consistent with RunI

- Mass cut removes D decays: 2<M(l+track)<4GeV/c²
- Background subtraction variable separates B's from background: signed IP of displaced track

Jet Charge Tag in Semileptonic Sample at CDF

- This work starts from the high-Pt version of the Run I Jet Charge Tagging algorithm.
- The algorithm is applied to and calibrated on the inclusive semileptonic events from the e+svt and μ +svt trigger

combined

 $78.6 \pm 0.2\%$

CPV - Two body charmless decays B → h⁺h⁻

- Time dependent asymmetry $B_d \to \pi\pi$ (α angle) and $B_s \to KK$ (γ angle)
- Direct CP asymmetry of the self tagging modes $B_d \to \pi K$ and $B_s \to K\pi$
 - 1. extracting the signal

Online hadronic selection
+ B pointing prim. vertex,
displaced & isolated

2. Separation of the components

- dE/dx ~ 1.3s for K/ π separation
- Statistical separation is still possible
- Unbinned log-likelihood fit defined including
 - Kinematical variables $M(\pi\pi)$ and a=(1-p1/p2)q1
 - dE/dx

Pt>2GeV/c Sep.~1.3 σ
$\begin{array}{c} 1000 \\ 800 \end{array} \begin{array}{c} D^{0} \rightarrow K\pi \end{array}$
400
$(dE/dx - dE/dx(\pi))/\sigma(dE/dx)$

Mode	Yield (65 pb ⁻¹)	
$B^0 o K\pi$	148±17(stat.) ± 17(syst)	
$B^0 \to \pi \; \pi$	39±14(stat.) ± 17(syst)	
$B_s \rightarrow KK$	90±17(stat.) ± 17(syst)	
$B_s \to K\pi$	3±11(stat.) ± 17(syst)	

CPV - Direct A_{CP} Selftagging Modes - Projections

- First observation $B_s \to KK$
- Direct A_{CP} violation ~ 0

Mode	Yield 2 fb ^{−1}	Yield 3.5 fb^{-1}
$B_d \to K\pi$	6700	11,725
$B_d o \pi\pi$	1770	3097
$B_s \to KK$	4040	7070
$B_s \to K\pi$	1070	1870

$$rac{BR(B_s
ightarrow K^\pm K^\mp)}{BR(B_d
ightarrow K^\pm \pi^\mp)} = 2.71\pm 1.15$$

$$A_{CP}(B^0 \to K^-\pi^+) = 0.02 \pm 0.15 \text{ (stat) } \pm 0.02 \text{ (syst)}$$

$$A_{CP}(B^0) = A_{CP}^{
m dir}\cos\Delta m_d t + A_{CP}^{
m mix}\sin\Delta m_d t$$
 $A_{CP}(B_s) = A_{CP}^{
m dir}\cos\Delta m_s t + A_{CP}^{
m mix}\sin\Delta m_s t$
Large but unknown

Towards B_s Mixing

- Measurement of Δm_s helps improve our knowledge of CKM triangle
- Combined world limit on B_s mixing
 - $-\Delta m_s > 14.4 ps^{-1} @95\% C.L.$
 - $-B_s$ fully mixes in < 0.15 lifetime!

• B_s oscillation much faster than B_d because of coupling to top quark

B_s Mixing sensitivity

- D0: 2 fb⁻¹, $\Delta m_s = 15$ and $s_t = 150$ fs
 - Please, be careful with these numbers!
 - Single muon trigger:
 - •B_s \rightarrow D_s μ X (3.5 σ)
 - $\bullet B_s \rightarrow D_s e X (3.5 \sigma)$
 - •B_s \rightarrow D_s π (2.2 σ), μ in the other side
 - Dimuon trigger:
 - $B_s \rightarrow D_s \mu X (3.0 \sigma)$, μ in the other side
- CDF:
 - $\Delta m_s = 15$, 2 σ limit with 0.5 fb⁻¹
 - $\Delta m_s = 18$, discovery with 1.7 fb⁻¹
 - $\Delta m_s = 24$, discovery with 3.2 fb⁻¹

Semileptonic decays:

- Very good statistics, but poorer time resolution
- If $\Delta ms \cong 15$ ps-1 expect a 1-2 σ measurement with 500 pb-1

CDF Trigger System Overview

- ► Crossing: 396 ns, 2.5 MHz
- Level 1: hardware
 - Electron, Muon, track, missing E_t
 - -15-20kHz (reduction \sim x200)
- Level 2: hardware
 - Cal. Cluster, jet finding, Silicon track
 - -300-350 Hz (reduction \sim x5)
- Level 3: Linux PC farm
 - $\sim Offline quantities$
 - -50-70 Hz (reduction $\sim x6$)

b Hadron Differential Cross Section

$$d\sigma(p\overline{p} \to H_b X, H_b \to J/\Psi X) \cdot Br(J/\Psi \to \mu\mu)/dp_T(J/\Psi)$$

 H_b denote both b hadron and anti b hadron $|Y(H_b)| < 0.6$

But:

We can not extract b fraction when b hadron is at rest

We want total b hadron cross section We want b cross section as a function of b hadron transverse momentum

b Hadron Differential X-Section

Bottom decays transfer about 1.7GeV p_T to the J/ Ψ We can probe b near p_T =0 if we can measure b fraction of J/ Ψ with p_T below this value

